skip to main content


Search for: All records

Creators/Authors contains: "Elias, Damian O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Defensive strategies, like other life-history traits favored by natural selection, may pose constraints on reproduction. A common anti-predator defense strategy that increases immediate survival is autotomy—the voluntary release of body parts. This type of morphological damage is considered to impose future costs for reproduction and fitness. We tested an alternative hypothesis that animals are robust (able to withstand and overcome perturbations) to this type of damage and do not experience any fitness costs in reproductive contexts. We explored the effects of experimental leg loss on the reproductive behavior of one species of NeotropicalPrionostemmaharvestmen. These arachnids undergo autotomy frequently, do not regenerate legs, and their courtship and mating necessitate the use of legs. We assessed the effect of losing different types of legs (locomotor or sensory) on courtship behavior and mating success in males. We found no differences in the mating success or in any measured aspect of reproductive behavior between eight-legged males and males that experienced loss of legs of any type. Additionally, we found that morphological traits related to body size did not predict mating success. Overall, our experimental findings support the null hypothesis that harvestmen are robust to the consequences of morphological damage and natural selection favors strategies that increase robustness.

    Significance statement

    In order to survive encounters with predators, animals have evolved many defensive strategies. Some of those behaviors, however, can come with a cost to their overall body condition. For example, some animals can voluntarily lose body parts (tails, legs, etc.) to escape. This process can then affect many aspects of an animal’s life, including reproduction. In a group of harvestmen (daddy long-legs) from Costa Rica, we tested the hypothesis that males are robust to the potential consequences of losing legs, and will not experience costs. We found that males that lost either legs used for locomotion or for sensory perception reproduced in the same way as animals with all of their legs. Consequently, we demonstrate that these arachnids are able to withstand the loss of legs with no effects on reproduction.

     
    more » « less
  2. null (Ed.)
    Abstract Understanding diversity has been a pursuit in evolutionary biology since its inception. A challenge arises when sexual selection has played a role in diversification. Questions of what constitutes a ‘species’, homoplasy vs. synapomorphy, and whether sexually selected traits show phylogenetic signal have hampered work on many systems. Peacock spiders are famous for sexually selected male courtship dances and peacock-like abdominal ornamentation. This lineage of jumping spiders currently includes over 90 species classified into two genera, Maratus and Saratus. Most Maratus species have been placed into groups based on secondary sexual characters, but evolutionary relationships remain unresolved. Here we assess relationships in peacock spiders using phylogenomic data (ultraconserved elements and RAD-sequencing). Analyses reveal that Maratus and the related genus Saitis are paraphyletic. Many, but not all, morphological groups within a ‘core Maratus’ clade are recovered as genetic clades but we find evidence for undocumented speciation. Based on original observations of male courtship, our comparative analyses suggest that courtship behaviour and peacock-like abdominal ornamentation have evolved sequentially, with some traits inherited from ancestors and others evolving repeatedly and independently from ‘simple’ forms. Our results have important implications for the taxonomy of these spiders, and provide a much-needed evolutionary framework for comparative studies of the evolution of sexual signal characters. 
    more » « less
  3. Abstract

    Animals communicate using a diversity of signals produced by a wide array of physical structures. Determining how a signal is produced provides key insights into signal evolution. Here, we examine a complex vibratory mating display produced by maleSchizocosa floridanawolf spiders. This display contains three discrete substrate‐borne acoustic components (known as “thumps”, “taps”, and “chirps”), each of which is anecdotally associated with the movement of a different body part (the pedipalps, legs, and abdomen respectively). In order to determine the method of production, we employ a combination of high‐speed video/audio recordings and SEM imaging of possible sound‐producing structures. Previous work has suggested that the “chirp” component is tonal, a signal trait that would be potentially unique in the genus. We measured signal tonality for all courtship components, as well as for courtship components from sixteen otherSchizocosawolf spiders. Our results suggest thatS. floridanaproduces courtship song using a combination of shared (palpal stridulation and foreleg percussion) and novel (abdominal movement) sound production mechanisms. Of particular interest, the “chirp”, which is produced using a novel abdominal production mechanism, is the only known tonal signal with acoustic properties that are unique within the genus. We argue that the potential evolution of a novel sound production mechanism has opened up a new axis of signaling trait space in this species, with important implications for how this signal is likely to function and evolve.

     
    more » « less
  4. Abstract

    Animal signals experience selection for detectability, which is determined in large part by the signal transmission properties of the habitat. Understanding the ecological context in which communication takes place is therefore critical to understanding selection on the form of communication signals. In order to determine the influence of environmental heterogeneity on signal transmission, we focus on a wolf spider species native to central Florida, Schizocosa floridana, in which males court females using a substrate-borne vibratory song. We test the hypothesis that S. floridana is a substrate specialist by 1) assessing substrate use by females and males in the field, 2) quantifying substrate-specific vibratory signal transmission in the laboratory, and 3) determining substrate-specific mating success in the laboratory. We predict a priori that 1) S. floridana restricts its signaling to oak litter, 2) oak litter best transmits their vibratory signal, and 3) S. floridana mates most readily on oak litter. We find that S. floridana is almost exclusively found on oak litter, which was found to attenuate vibratory courtship signals the least. Spiders mated with equal frequency on oak and pine, but did not mate at all on sand. Additionally, we describe how S. floridana song contains a novel component, chirps, which attenuate more strongly than its other display components on pine and sand, but not on oak, suggesting that the ways in which the environment relaxes restrictions on signal form may be as important as the ways in which it imposes them.

     
    more » « less